Меню

УСЛОВИЕ:
Найдите наименьшее значение функции y = x/4 + 4/x на промежутке [1; 3].


РЕШЕНИЕ:$$ y=\frac{x}{4}+\frac{4}{x} \\ y’=\frac{1}{4}-\frac{4}{x^2} \\ y’=0\ =>\ \frac{1}{4}-\frac{4}{x^2}=0 \\ \frac{4}{x^2}=\frac{1}{4} \\ x^2=16 \\ x=+-4 $$
Так как 4 и -4 не лежат на промежутке [1;3], то наименьшее значение достигается на одном из концов отрезка:
$$ f(1)=\frac{1}{4}+4=4.25 \\ f(3)=\frac{3}{4}+\frac{4}{3}=\frac{9+16}{12}=\\=\frac{25}{12}=2\frac{1}{12} $$
Ответ: $$ 2\frac{1}{12} $$

$$ \frac{x}{4}+ \frac{4}{x}= \frac{x^{2}+16}{4x} \\ f^{’}(x)= \frac{2x*4x-(x^{2}+16)*4}{16x^{2}}= \frac{4x^{2}-16}{16x^{2}} \\ 4x^{2}-16=0 \\ x=+-2 $$
-2∉[1;3]
2∈[1;3]
$$ y(1)= \frac{1}{4}+ \frac{4}{1}=4 \frac{1}{4}=4,25 \\ y(2)= \frac{2}{4} + \frac{4}{2}=\\= \frac{1}{2}+ \frac{2}{1}=2,5 \\ y(3)= \frac{3}{4}+ \frac{4}{3}= \frac{25}{12} =2 \frac{1}{12} $$
Ответ: Наименьшее значение функции в точке 3, равно 2 целых 1/12






Похожие примеры: