Меню

УСЛОВИЕ:
Помогите с заданием решившему два или три задания дам лучшее решение.
1) Найти координаты X если Х перпендикулярен i-2j+k, x перпендикулярен 2i-3j+k, а модуль вектора Х равен 6*(корень из 3)
2) Проверить принадлежат ли точки А(-1;3;4) B(0;1;5) C(-2;3;5) D(6;0;0) одной плоскости, составить уравнение плоскости.
3) Составить уравнение прямой через точку А(1;3;2) паралельно плоскости XOY и образует угол 45 с прямой X/1=y/1=z/0. Сколько ответов имеет задача?


РЕШЕНИЕ:

Делаем из четырёх точек три вектора (одну соединяем с тремя остальными), находим координаты этих векторов, вычитая координаты начала вектора из координат конца вектора, далее находим смешанное произведение этих векторов (численно равно определителю, строки которого и есть эти вектора в любом порядке). Если смешанное произведение равно нулю, значит эти вектора (а значит и эти точки) лежат в одной плоскости, если не равно нулю-то не лежат. Это универсальный стандартный способ. это к номеру 2 Для номера 1. Для перпендикулярности двух ненулевых векторов необходимо и достаточно, чтобы их скалярное произведение равнялось нулю, учитывая данное условие состаляем уравнения Х(x,y,z) -обозначим так коорд. Х x-2y+z=0 2x-3y+z=0 Третье уравнение получаем из формулы модуля: х^2+y^2+z^2=108






Похожие примеры: