Меню

УСЛОВИЕ:
Решить линейное неравенство (ответ с решением)


РЕШЕНИЕ:

$$ 1) 1-2x \geq 4-5x\\ -2x+5x \geq 4-1\\ 3x \geq 3\\ x \geq 3:3\\ x \geq 1\\ $$
Ответ: [1; +бесконечность)

$$ 2)9-7x>-1-17x\\ -7x+17x>-1-9\\ 10x>-10\\ x>-10:10\\ x>-1\\ $$
Ответ: (-1; +бесконечность)

$$ \frac{2x+1}{5}-\frac{2-x}{3}>2 \ \ |*15\\ \\ 3(2x+1)-5(2-x)>30\\6x+3-10+5x>30\\ 6x+5x>30-3+10\\ 11x>37\\ x>\frac{37}{11}=3\frac4{11} $$
Ответ: (3(4/11); +бескон)

$$ 4) \frac{8}{x+2}-2<\frac{2}{x+2}+5\\ \\ \frac{8}{x+2}-\frac{2}{x+2}<5+2\\ \\ \frac{8-2}{x+2}<7\\ \\ \frac6{x+2}<7\\ \\ x \neq -2;\\ $$

$$ \frac6{x+2}-7<0\\ \frac{6-7(x+2)}{x+2}<0\\ \frac{-7x-8}{x+2}<0\\ -(\frac{7(x+\frac87)}{x+2})<0\\ \frac{7(x+\frac87)}{x+2}>0\\\\ $$

Ответ: x ∈ (-беск; -2) U (-8/7; +бескон) Вложение ...........................................





Похожие примеры: