Меню

УСЛОВИЕ:
Cos4x+cos2x=0 укажите корни,принадлежащие отрезку -п до п/3


РЕШЕНИЕ:2 Сos² 2x  -1 +Cos 2x = 0
2 Cos² 2x -  Cos x -1 = 0
Решаем как квадратное
a) Cos 2x = 1                    б) Cos 2x = -1/2
2x = 2πk, где к ∈Z               2x = +- arc Cos (-1/2) +2π n, где n∈Z
х = π к, где к∈Z                  2x = +-2π/3 + 2πn, где n∈Z
                                            x = +- π/3 + πn,где n∈ Z 
Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток
Разберёмся с указанным  отрезком на числовой прямой
-π       -π/2        0       π/3        
а) х = πк,где к ∈Z
k = -1
x = -π ( попадает в указанный отрезок)
к = 0
х = 0 ( попадает в указанный отрезок)
к = 1
к = 2
х = 2π( не попадает в указанный отрезок)
б) х = +- π/3 +πn,где n ∈Z
n = 0
x = +-π/3 (попадает в указанный отрезок)
n  = 1
х = π/3 + π( не попадает)
х= - π/3 +π ( не попадает)
n = -1
x = π/3 - π = -2π/3( попадает)
х = -π/3 -π(не попадает)








Похожие примеры: