Меню

УСЛОВИЕ:
3) что значит,что два неравенства равносильны?
5) имеет ли решения неравенство второй степени,если его дискриминант равен нулю? Какие случаи возможны?
6)Что значит решить систему рациональных неравенств с одним неизвестным?
7) Как решают системы рациональных неравенств?


РЕШЕНИЕ:3) Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет
------(
Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)---------
7)

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x), ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражение r(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любое целое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному.




Похожие примеры: