Меню

» свойства степеней ...

  • Решите, используя свойства степеней: \( \frac{5^7 \cdot 7^8}{35^7} \); \( \frac{2^17 \cdot 3^6}{24^5} \); \( \frac{36^7}{2^12 \cdot 3^10} \)
  • Вычислите наиболее рациональным способом: (17,31²-12,69²)-(29,81²-0,19²) И какие свойства степеней? Выполнить вычисление, если основания одинаковые, а степени разные и т.
  • Надо ответить на вопросы: 1. Что называется алгебраической дробью?2. Что такое тождество? 3. Что называется степенью с натуральным показателем n? 4. Что называют допустимым значеним дроби?5. Что значит решить уравнение?6. Что называют сокращением дробей? 7. Первое свойство алгебраической дроби.8. Алгаритм умножения алгебраической дроби. 9. Второе свойство алгебраической дроби.10. Правило сложения алгебраических дробей.11. Объясните выражение: "многочлен-целое выражение"12. Алгоритм вычисления дробей?13. Алгоритм отыскания общего знаминателя. 14. Свойства степеней с одинаковым основанием.
  • Пример на свойства степени \( \frac{4^{2,9} \cdot 7^{2,4}}{28^{1,4}} \)
  • Свойства степени с рациональными показателями. 1) Вычислить: \( 125^{-2} \), \( 0.25^{\frac{1}{2}} \), \( 81^{\frac{1}{4} }*(\frac{1}{27} )^{-\frac{2}{3}} \), \( (\frac{1}{32} )^{-2} \)2) Сравнить: \( (\frac{1}{4})^{-\frac{8}{9}} и (\frac{1}{4})^{-\frac{3}{5}} \), \( 4,08^{\frac{2}{3}} и 4,0081^{\frac{2}{3}} \), \( 3^{-5} и 3,5^{-5} \)3) Упростить: \( \frac{3 \sqrt[3]{x} }{5 \sqrt[5]{ x^{2}}} \), \( \frac{2x}{\sqrt[3]{x}* \sqrt[4]{x^3}} \)
  • Нужно применить свойство степеней с рациональным показателем \( (5^2)^{0,4} \), \( \frac{4^{0,3}:4^{0,8} }{1,7} \), \( (ab)^ \frac{1}{3} \), \( 3^{0} \), \( ( \frac{m}{n})^{0,75} \)
  • 1. Назовите основные свойства степени.
  • 1. Сформулируйте основное свойство степени 2. 1) Как можно возвести в степень произведение чисел, степень числа? 2) Запишите результат вычислений в виде \( а*10^{n} \), где \( 1^{\leq } a < 10 \) a)\( (5*10^{4})^{3} \) б) \( (7*10^{5} )^{3} * (2*10^{6})^{2} \) 3. Замените выражение \( (p^{2})^{5}*(p^{4})^{3} \) степенью с основанием p, указывая, какие свойства степени вы применяете. 4. Вычислите \( \frac{( (2^{5}) ^{2} * 3^{8} )}{ 6^{6} } \)
  • На примере неравенств 3x^2 (в квадрате) +5x-20 покажите, как можно решить неравенство второй степени, используя свойства графика квадратичной функции.
  • Сократите дробь \( \frac{ab^\frac{1}{2}+b}{a^2-b} \), \( \frac{8a-1}{4a^{\frac{2}{3}}+2\sqrt[3]{a}+1} \)
  • Нужно перечислить все основные свойства функций: y=(x-2) в 4 степени, y=0.5sinx+2 y=0.5cosx+2 y=-(x+2)в 4 степени.
  • Постройте график функции у=х (в степени 7/4) + 1 и опишите ее свойства
  • Найти область определения функции y = корень в 4 степени из 2 + 0,3x 2.Изобразить эскиз графика функции y = x^7 и перечислить ее основные свойства. Пользуясь свойствами, сравните с единицей (0,95)^7 ; (-2 корень из 3)^7 и (-3 корень из 2)^7
  • Используя свойство степени,найдите значение выражения: 24^5 ______ 4^7*81
  • Какое свойство степени используется при решение простейших показательных уравнений
  • Вычислите, используя свойста степени : а) 20(в 3 степени) * 0,5 (в 3 степени) = б) 4*2 ( в 5 степени) --------- = 2 (в 7 степени)
  • Какие пять свойств имеют степени с натуральным показателем?
  • 1.Многочленом называется ….. 2.Степенью многочлена………3.Свойства многочленов.4.Подобными называются слагаемые ………5.Многочленом стандартного вида……..6.Суммой многочленов называется……..7. Разностью многочленов называется…….. 8.Правила раскрытия скобок 9.Произведение одночлена на многочлен. 10. Какие многочлены называются противоположными 11.Как называется преобразование многочлена в произведение 12.Произведение многочленов 13.Разложение многочлена на множители 14.Целые выражения…..15.Числовое значение целого выражения……..
  • Назовем натуральное число n-богатым,если сумма всех его натуральных делителей больше 2n.например ,12 -число богатое,т.к.1+2+3+4+6+12 больше 24.Каким не может быть богатое число?А)точным квадратомБ)числом,кратным 2013В)больше миллионаг)степень. числа 3д)каждое из свойств А-Г -возможно.
  • Степень с рациональным показателем и ее свойства. Основание равнобедренной трапеции 7 см и 13 см, а ее площадь равна 40 см2. Вычислите высоту этой трапеции. Квадратный трехчлен. Выведите формулу разложения квадратного трехчлена ах2 + вх + с, где а > 0, на линейные множители. Сравнить: (2,1 · 10-1) · (4 ·10-2) и 0,008. Признаки подобия треугольников