Меню

» свойства степеней ...

  • Нужно выбрать все примеры значения которых равны нулю.1) (-1)^4 + (-1)^5 2) -1^4 + (-1)^53) -1^5 - (-1)^44) -1^5 + (-1)^45) (-1)^9 - (-1)^5 - (-1)^4Верны только 1 и 4. Но почему ? Объясните как правильно нужно считать в таких случаях.И почему в одних примерах есть скобки, а в других нет и как они влияют на ход решения.
  • Найдите значение примера, используя свойства степеней \( \frac{ 9^{5} }{ 3^{7} } \), \( \frac{ 8^{7} }{ 4^{8} } \), ....
  • Надо ответить на вопросы: 1. Что называется алгебраической дробью?2. Что такое тождество? 3. Что называется степенью с натуральным показателем n? 4. Что называют допустимым значеним дроби?5. Что значит решить уравнение?6. Что называют сокращением дробей? 7. Первое свойство алгебраической дроби.8. Алгаритм умножения алгебраической дроби. 9. Второе свойство алгебраической дроби.10. Правило сложения алгебраических дробей.11. Объясните выражение: "многочлен-целое выражение"12. Алгоритм вычисления дробей?13. Алгоритм отыскания общего знаминателя. 14. Свойства степеней с одинаковым основанием.
  • Что такое степень? свойства степени?
  • Свойства степени с рациональными показателями. 1) Вычислить: \( 125^{-2} \), \( 0.25^{\frac{1}{2}} \), \( 81^{\frac{1}{4} }*(\frac{1}{27} )^{-\frac{2}{3}} \), \( (\frac{1}{32} )^{-2} \)2) Сравнить: \( (\frac{1}{4})^{-\frac{8}{9}} и (\frac{1}{4})^{-\frac{3}{5}} \), \( 4,08^{\frac{2}{3}} и 4,0081^{\frac{2}{3}} \), \( 3^{-5} и 3,5^{-5} \)3) Упростить: \( \frac{3 \sqrt[3]{x} }{5 \sqrt[5]{ x^{2}}} \), \( \frac{2x}{\sqrt[3]{x}* \sqrt[4]{x^3}} \)
  • Нужно применить свойство степеней с рациональным показателем \( (5^2)^{0,4} \), \( \frac{4^{0,3}:4^{0,8} }{1,7} \), \( (ab)^ \frac{1}{3} \), \( 3^{0} \), \( ( \frac{m}{n})^{0,75} \)
  • Сформулируйте и докажите основные свойства степени.
  • 1. Упростите выражения: а)2а^5b^2*ba^3 б)(-0,1х^3)^4*10х в)(2/3ab^2)^3*3/2a^3b^2 2.используя свойства степени, найдите значение выражения: 4^5*2^6/32^3
  • На примере неравенств 3x^2 (в квадрате) +5x-20 покажите, как можно решить неравенство второй степени, используя свойства графика квадратичной функции.
  • Нужно перечислить все основные свойства функций: y=(x-2) в 4 степени, y=0.5sinx+2 y=0.5cosx+2 y=-(x+2)в 4 степени.
  • Используя свойство степени,найдите значение выражения: 24^5 ______ 4^7*81
  • Какое свойство степени используется при решение простейших показательных уравнений
  • Вычислите, используя свойста степени : а) 20(в 3 степени) * 0,5 (в 3 степени) = б) 4*2 ( в 5 степени) --------- = 2 (в 7 степени)
  • Степень с натуральным показателем. Свойство степени
  • 1.Многочленом называется ….. 2.Степенью многочлена………3.Свойства многочленов.4.Подобными называются слагаемые ………5.Многочленом стандартного вида……..6.Суммой многочленов называется……..7. Разностью многочленов называется…….. 8.Правила раскрытия скобок 9.Произведение одночлена на многочлен. 10. Какие многочлены называются противоположными 11.Как называется преобразование многочлена в произведение 12.Произведение многочленов 13.Разложение многочлена на множители 14.Целые выражения…..15.Числовое значение целого выражения……..
  • Тема: Степень с натуральным показателем. Степень и её свойства. Задание: Вычислите: а)сумму кубов чисел 5 и -3. б) куб суммы чисел 9 и - 11. в)разность квадратов чисел 12 и 8. г)квадрат разности чисел 12 и 8. д) удвоенное произведение квадратов чисел 7 и -5 е) утроенное произведение числа 15 и квадрата числа 4.
  • 1. Правило сложения, вычитания, умножения и деления обыкновенных дробей с одинаковыми и разными знаменателями2. Определение процента. Нахождение процента от числа ,числа по её проценту.3. Арифметические действия с десятичными дробями (правила сложения, вычитания, умножения ,деления)4. Правила нахождение части от целого и целого по его части (приведите примеры)5. Представление о пропорции. Основное свойство пропорции.6. Понятие степени ,квадрата и куба числа7. Определения уравнения и корня уравнения. Перенос слагаемых из одной части уравнения в другую. 8. Определение коэффициента
  • Проверьте, верны ли следующие равенства : 1 в 3 степени +2 в 3 степени =(1+2)во 2 степени 1 в 3 степени +2 в 3 степени + 3 в 3 степени = (1+2+3) во 2 степени 1 в 3 степени + 2 в 3 степени + 3 в 3 степени + 4 в 3 степени = (1+2+3+4) во 2 степени сформулируйте данное свойство чисел проверьте это свойство для первых пяти натуральных чисел
  • Назовем натуральное число n-богатым,если сумма всех его натуральных делителей больше 2n.например ,12 -число богатое,т.к.1+2+3+4+6+12 больше 24.Каким не может быть богатое число?А)точным квадратомБ)числом,кратным 2013В)больше миллионаг)степень. числа 3д)каждое из свойств А-Г -возможно.
  • Степень с рациональным показателем и ее свойства. Основание равнобедренной трапеции 7 см и 13 см, а ее площадь равна 40 см2. Вычислите высоту этой трапеции. Квадратный трехчлен. Выведите формулу разложения квадратного трехчлена ах2 + вх + с, где а > 0, на линейные множители. Сравнить: (2,1 · 10-1) · (4 ·10-2) и 0,008. Признаки подобия треугольников